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Point Sets: Well-spaced 

•  Well-spaced = 
–  Farthest Voronoi vertex (coverage) not much farther than closest 

Delaunay neighbor (free) 
–  Measured by Voronoi cell aspect ratio (A) or beta = rc / rf 

–  beta <= 1 is often the goal for uniform distributions 
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Point Sets: Random 
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Why Do We Care?! 

Applications for Random Well Spaced point 
Sets 



Provably Good Meshing 

Fig. 2. Top, a non-convex fracture domain with a hole. Bottom,
a seismic domain; our implementation succeeded despite the user
selecting a coarser mesh size than the theory requires.

triangle’s circumcircle contains no point visible to the tri-
angle’s vertices. Covering triangulations [28] add interior
points to improve triangle angles, but constraint edges and
vertices limit the improvement. In a Conforming Delau-
nay Triangulation (CDT), constraint edges are subdivided
as well, greatly improving mesh quality. Each constraint
edge is a union of triangle edges, and triangles are con-
strained Delaunay. CDT is important in many fields such
as interpolation, rendering, and mesh generation. Well-
shapedmeshes of well-spaced points havemany useful prop-
erties [27].

A very e�ective family of CDT algorithms is based on De-
launay refinement: start with a coarse mesh, and insert a
point at the center of large Delaunay circumcircles. We con-
trast and bridge our method to the root of this family’s
tree, Chew [8]. Since Chew’s seminal paper, Delaunay re-
finement has been generalized in many ways. The most rel-
evant generalization for us is that new points do not need
to be at the exact center of a Delaunay circle; indeed our
work shows they can be placed randomly, as long as they
are far enough away from prior points. O�-centers [37] in-
serts a point between the center and a short edge; it re-
duces the total number of inserted points by implicitly grad-
ing the mesh size. It also improves numerical stability. In
three-dimensions, nearly-planar tetrahedra can be avoided
by perturbing points. This can be done randomly [9] or de-
terministically [14]. This can be done symbolically or with
actual coordinates or the Voronoi weights [6]. Randomly in-
serting a point, say within a smaller circle concentric with
the Delaunay circle, reduces the bias.

Parallel Delaunay refinement is possible. The points used

to fix di�erent simplices will interfere with one another, but
this can be resolved by only inserting the non-conflicting
points, and taking multiple passes [34].

In any event, Delaunay refinement inserts biased points; an
unbiased process selects a new point outside the (constant)
radius r disk of any other point, but is otherwise chosen
uniformly at random from the remaining disk-free area of
the domain. This is also known in spatial statistics [4] as the
hard-core Strauss disc processes with inhibition distance
r1 and disc radius r2, where for us r1 = r2. The limiting
distribution is called amaximal Poisson-disk sample (MPS)
in graphics.

The probability of inserting a point at a given location is
independent of the location. For Delaunay refinement the
insertion probability depends on intermediate properties of
the algorithms, such as the order in which bad-angle tri-
angles are addressed and the DT angles and circle centers.
The bias may be di⌅cult to understand, describe, or pre-
dict, although spectrum analysis of pairwise distances can
measure bias. Unbiased points have spectra with the “blue
noise” property. Unbiased sampling algorithms have a long
history in computer graphics relating to image synthesis,
including applications in anti-aliasing [22] andMonte Carlo
methods for ray tracing, path tracing, and radiosity [38].

Random meshes are useful in several contexts. The e�ects
of mesh structure on modeling fracture in solid mechan-
ics was studied in detail in the 1990’s; see Bolander and
Saito [3] for a thorough discussion. For some finite element
methods, crack propagation is limited to triangle edges,
or dual Voronoi cell edges. Structure also plays a role for
spring networks, e.g. crack formation may depend on the
orientation of the mesh with respect to the stress field. In
either method, the locations of fractures are suspect if the
locations of mesh points are biased. Lattice meshes are par-
ticularly troublesome [20], as is geometric regularity aris-
ing from some adjustment procedures such as point repul-
sion [36] and centroidal Voronoi tesselation [24]. Strain and
stress rates are independent of rotations, i.e., the physics
are isotropic. For spring networks, mesh structure may af-
fect the ability to model this isotropy and reproduce uni-
form elasticity, independent of fracture.

For computational science validation it may help to have
multiple meshes with nearly identical global properties,
but with local di�erences. Simulations results over all the
meshes can be compared, to see if the results are dependent
on mesh artifacts. Fracture simulations are dependent, but
point location variablity is considered a subset of material
property variability. Simulations over an esemble of meshes
are collected to generate the range of possible experimen-
tal outcomes. Unbiased Poisson-disk sampling is ideal for
these applications; amaximal distribution helps with angle
bounds (Section 3.1) and performance [2].

The meshing literature abounds with methods for handling
sharp features of the domain: small input angles, and edges

2

Seismic Simulations	

maximal helps Δ quality	


• Physics simulations 
• Voronoi mesh, cell = points closest to a sample 
•  Fractures occur on Voronoi cell boundaries 

– Mesh variation models material strength variation 
– CVT, regular lattices give unrealistic cracks 

• Unbiased sampling gives realistic cracks 
• Ensembles of simulations 
• Domains: non-convex, internal boundaries 
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deformed configuration, the position of a material point is
denoted by x, and the displacement u = x−X. In the numer-
ical solution to follow, interpolation functions will be con-
structed directly on the reference configuration. Therefore,
a total Lagrangian formulation of the governing equations
is appropriate [8]. The conservation of linear momentum is
given by [7]

∂P
∂X

: I + ρof = ρoü, (1)

where P is the first Piola-Kirchhoff stress tensor, f is the body
force vector per unit mass, ρo is the reference density, and I
is the identity tensor. The weak form of Eq. 1 is given by
∫

#o

ρoü · δu d#o =
∫

%o

to · δu d%o +
∫

#o

ρof · δu d#o

−
∫

#o

ρoP : (∂(δu)/∂X) d#o (2)

where δu is a virtual displacement vector, and to is the trac-
tion vector per unit reference area. The displacement u and
virtual displacement δu are members of the Sobolev function
space of degree one [8].

In the next section, a randomly close-packed Voronoi tes-
sellation is used to mesh the reference domain #o. The face
network of the Voronoi mesh will be used as a random basis
for representing new fracture surfaces in the deformed con-
figuration. In Sect. 4, Eq. 2 will be solved using a Galerkin
finite element approach where each Voronoi cell is formu-
lated as a finite element directly on the reference
configuration.

3 Randomly close-packed Voronoi tessellations

Voronoi tessellations have a rich history in mathematics and
science and have a number of advantageous properties [43].
Given a finite set of points Xi or nuclei, the Voronoi
tessellation is defined as the collection of regions or cells
Vi where

Vi =
⋂

i "= j

{X|d(Xi , X) < d(X j , X)}. (3)

Here, X represents an arbitrary point in the domain, and the
function d is the Euclidean distance between two points.
Each spatial point belonging to the Voronoi cell i is closer to
nucleus i than all other nuclei. Note that each Voronoi cell is
defined as the intersection of half-spaces and is thus convex.
An example of a two dimensional Voronoi cell is shown in
Fig. 1. While the Voronoi tessellation can be formed from
any finite set of points or seeds, a special structure arises
from the study of close packing of equi-sized hard spheres
[1]. A classic experiment of dropping hard spheres into a rel-
atively large container produces a structure known as random

Fig. 1 A collection of points and their associated Voronoi diagram
defined by Eq. 3

(a) (b)

Fig. 2 The associated Voronoi diagram for both (a) an hexagonal close
packed array of points, and (b) a randomly close packed array

close-packed (RCP) [64]. Unlike the well known hexagonal
close-packed (HCP) structure with a packing factor of 0.740,
the RCP structure exhibits a maximum packing factor of only
0.637. An example of the associated Voronoi tessellation for
both the HCP and RCP structures in two dimensions is shown
in Fig. 2. The RCP structure arises in a number of scientific
fields and has been extensively studied. The RCP structure
provides a foundation for the study of amorphous solids as
described by Zallen [64]. The statistical geometry aspects of
RCP structures and their associated Voronoi diagrams have
been studied by Finney [20]. In three dimensions the aver-
age number of nearest neighbors is 14.3. For comparison, the
number of nearest neighbors of the hexagonal close-packed
structure is exactly 14. For the RCP structure the average
aspect ratio of each Voronoi cell is approximately one. The
median number of cell faces is 14 with a large majority of
the face distribution in the range of 13 to 16. The median
number of edges of each cell face is 5 with a large majority
of the distribution in the 4 to 6 range. Most importantly each
junction or node of the RCP Voronoi structure is randomly
oriented with only a short range correlation to neighboring
nodes. In two dimensions the RCP Voronoi structure results
in cells with an average number of edges of exactly 6 and
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Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the
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Motivating from Modern Graphics: 
Texture Synthesis 

• Real-time environment exploration. Games! Movies! 
• Algorithm to create output image from input sample 

– Arbitrary size 
–  Similar to input 
– No visible seams, blocks 
– No visible, regular repeated patterns 

 
examples from wikipedia: Spaghetti ���

Li Yi Wei	

SIGGRAPH 2011	




Robot Motion Planning 

Real time motion planning  23 DOF ���
	


Pictures and results provided by: Chonhyon Park (Dinesh’s group)	


Precomputed Well-Spaced points directs parallel tree 
expansion  and enables real-time motion planning in higher 
dimensions 



That was the applications! 
 

…  
Now for the algorithms! 

 
 How can we generate a random well spaced point 

set? 



 … So We Need to Generate Random Well-Spaced Points. 
But How?!!  Maximal Poisson-Disk Sampling (MPS) 

• What is MPS? 
–  Insert random points into a domain, build set X 

Ω
x4?	


Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.
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Disk-free condition	
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time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Bias-free condition	


Bias-free: ⌥xi ⇧ X, ⌥� ⌅ Di�1 :

P (xi ⇧ �) =
Area(�)

Area(Di�1)
(1a)

Empty disk: ⌥xi, xj ⇧ X,xi ⌃= xj : ||xi � xj || ⇤ r (1b)
Maximal: ⌥x ⇧ D, �xi ⇧ X : ||x� xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4⇥ faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

Maximal condition	




Simple Problem?! 
 

My initial thoughts (2010): 
  

Generate a bunch of disks in a box, sounds too 
 simple with minor impact! 

 
 

 
 

Probably I will forget about it after this project. 
 
 

I was Completely wrong! 



•  First E(n log n) algorithm with provably correct output 
–  Efficient Maximal Poisson-Disk Sampling, 

Ebeida, Patney, Mitchell, Davidson, Knupp, Owens,  
SIGGRAPH 2011 

•  Simpler, less memory, provably correct, faster in practice but 
no run-time proof 

–  A Simple Algorithm for Maximal Poison-Disk Sampling in High Dimensions, 
Ebeida, Mitchell, Patney, Davidson, Owens 
Eurographics 2012 

•  Voronoi Meshes 
–  Sites interior, close to domain boundary are OK, not the dual of a 

body-fitted Delaunay Mesh 
–  Uniform Random Voronoi Meshes 

Ebeida, Mitchell 
IMR 2011 

•  Delaunay Meshes 
–  Protect boundary with random balls 
–  Efficient and Good Delaunay Meshes from Random Points 

Ebeida, Mitchell, Davidson, Patney, Knupp, Owens 
SIAM GD/SPM 2011  Computer Aided Design 

•  MPS with varying radii 
–  Adaptive and Hierarchical Point Clouds 
–  Variable Radii Poisson-disk sampling 

Mitchell, Rand, Ebeida, Bajaj 
CCCG 2012 
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Main Published Results 



Main Published Results 

•  Simulation of Propagating fractures 
–  Mesh Generation for modeling and simulation of carbon 

sequestration processes 
Ebeida, Knupp, Leung, Bishop, Martinez 
SciDAC 2011 

•  Hyperplanes for integration, MPS and UQ 
–  K-d darts, 

Ebeida, Patney, Mitchell, Dalbey, Davidson, Owens,  
TOG “to appear” 

•  Rendering using line darts 
–  High quality parallel depth of field using line samples, 

Tzeng, Patney, Davidson, Ebeida, Mitchell, Owens 
HPG 2012 

•  Reducing Sample size while respecting sizing 
function 

–  A simple algorithm that replaces 2 disks with one while 
maintaining coverage and conflict conditions 

–  Sifted Disks 
Ebeida, Mahmoud, Awad, Mohammad, Mitchell, Rand, Owens 
EG 2013 

•  MPS with improved Coverage 
–  Using rc < rf 
–  Improving spatial coverage while preserving blue noise 

Ebeida, Awad, Ge, Mahmoud, Mitchell, Knupp, Wei 
SIAM GD/SPM 2013  Computer Aided Design 



Prior Results: CCCG’11 
How fast can radii vary? 

•  If varies slowly 
–  bounded # neighbors for disk conflict checks  <->  

bounded-angle DT 
•  If shrink too fast 

–  Unbounded # neighbors 
–  Infinite run-time 
–  Zero angles in triangulation 

!!"

""

#$%!&"
L y! xi + r(xi )

Still big, OK	


Vanishing radius, ���
infinite neighbors	


α	


α	




Q. How fast can it vary?  
A. Depends how Conflict is defined. 24th Canadian Conference on Computational Geometry, 2012

Distance Order Full Conflict Edge Edge Sin Angle Max
Method Function Independent Coverage Free Min Max Min L

Prior r(x) no no no 1/(1 + L) 2/(1� 2L) (1� 2L)/2 1/2
Current r(y) no no no 1/(1 + L) 2/(1� L) (1� L)/2 1
Bigger max (r(x), r(y)) yes no yes 1 2/(1� 2L) (1� 2L)/2 1/2
Smaller min (r(x), r(y)) yes yes no 1/(1 + L) 2/(1� L) (1� L)/2 1

Table 1: Summary of results for spatially varying radii. Points closer than f conflict. Symmetric f provide order
independence: any sampling with the order of samples permuted still satisfies the empty disk property. Full
coverage means that every point of the domain is inside some sample’s r disk. Conflict free means that no sample
is inside another sample’s r disk. Edge max and min bound the lengths of an edge containing x in a Delaunay
triangulation of X, as a factor of r(x). The Lipschitz constant must be less than max L to bound the maximum
DT edge length and minimum DT angle.

also on r(y), which can be bounded using L. Some ap-
proaches require L < 1, others L < 1/2. The quality
guarantees disappear as L approaches the upper limit.
As L approaches zero the quality guarantees smoothly
approach those in the uniform case.

Bias-free An alternative to uniform-random is to
weight the uncovered set by the local sizing function,
i.e., the desired output density. In dimension d,

w(S) =

Z

S

1

r(x)d
dx,

8A ⇢ S(X) : P (xn+1 2 A |X) =
w(A)

w(S(X))
. (12)

We have not implemented it, but one could approximate
Equation 12 from values at quadtree corners.

Prior-disk Output Guarantees We justify the edge-
length and angle guarantees in Table 1 for prior-disks.
The proofs for the other criteria are similar and are
given in Appendix 8.

Proposition 3 If X satisfies the empty disk property,

then for all i,j, |xi � xj | � r(xi)
1+L .

Proof. If i < j, the empty-disk definition implies
|xi � xj | � r(xi). Otherwise,

r(xi)  r(xj) + L |xi � xj |  |xi � xj |+ L |xi � xj |
by the Lipschitz property and the fact that xi satisfies
the empty-disk property when it is inserted. ⇤

Proposition 4 If X is maximal and T is a result-

ing Delaunay triangle, then the circumradius RT 
min

⇣
r(y)
1�L ,

r(x)
1�2L

⌘
where y is the circumcenter and x is

any triangle vertex.

Proof. Since X is maximal, |z� y|  r(z) for some
sample z 2 X, where z is not required to be a vertex of
T ; see Figure 3. The Lipschitz property gives

x

y

< r(y)

z

< r(z)

Figure 3: Notation for proofs
of circumradii bounds in the
Delaunay triangulation of a
maximal sampling.

|z� y|  r(z)  r(y) + L |z� y| .
Rearranging gives RT  |z� y|  r(y)

1�L . Applying the
Lipschitz property again gives,

RT = |x� y|  |z� y|  r(y)

1� L

 r(x) + L |x� y|
1� L

.

Rearranging again completes the proof. ⇤

Corollary 5 If X is maximal, |xi � xj |  2r(xi)
1�2L .

Lemma 6 Suppose X is a maximal sample satisfying

the empty disk property. Then all the angles in the De-

launay triangulation are at least arcsin
�
1�2L

2

�
.

Proof. Let ↵ be an angle in the Delaunay triangula-
tion of X and let x be the vertex on the edge oppo-
site of ↵ which was inserted first. This opposite edge
has length at least r(x). Propositions 2 and 4 give

sin↵ � r(x)
2r(x)/(1�2L) =

1�2L
2 . ⇤

6 Experimental Results

We consider the spectra of distributions generated with
the di↵erent methods, but similar coverage/inhibition
radii. Spectra are analyzed using the Point Set Anal-
ysis [21] tool, which generates standardized diagrams,
aiding direct comparison. The first panel is the point
set. The second panel is the FFT spectrum of the point
set with the DC component removed. The third panel
is the radial mean power, which measures the average
variation of the second panel’s rings’ magnitudes.

L is Lipschitz constant: f(x)-f(y) < L |x-y| 
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Prior Results: CCCG’11 
Decoupling coverage and conflict-free radii 
• Disk coverage radius larger than free radius 

 Rc > Rf   (yellow > green) 
• New disks must cover some unique uncovered area 

–  Else maximal (limit) distribution would be the same 
–  Contrast to Hard-core Strauss disc process: 

coverage disks are observed, no effect on process 

Process:	

  New candidate point uniform at random	

  (f) Rejected if center inside a small green disk	

  (c) Accepted if its yellow disk covers some white area	


reject, yellow already covered	


OK, covers some white	


reject, inside a green disk	


Alg:	

  Only generate points in an outer approximation���
  to regions satisfying (c) and (f) in the first place.	

	





    















Two-radii MPS output 

•  Classic MPS 
Rf = Rc 


    













•  Two-radii MPS 
 2 Rf = Rc 

•  Rf = min center dist 
•  Rc =max Vor dist 

•  Uniform 
 R = 0 
non-maximal 


    

















This Research: Improving spatial coverage 

• rc > rf increase randomness while degrading mesh quality 

• Here we try the opposite direction rf < rc 
 

Question:	

Can we decouple coverage radius 	

from disk-free radius such r_c < r_f ?	




Current Research: Sparse MPS (under preparation) 

Answer: Yes, If the algorithm doesn’t lead to configurations 	

Like this.	


Unfortunately!	

Vey hard to achieve 	

via sampling due to 	

global constraints	


! =
rc
rf

! 

PS 

MPS 
DR 

1 

Two-Radii MPS 
incremental distributions 

1
3
! 0.58

Opt-"i 

no distributions 

0 
1
2
! 0.71

0.5

Impact of solution:	

A tune-up parameter 	

to trade randomness	

For better space coverage	

e.g. better mesh quality 	




Our poor-man’s solution 

• Generate an MPS as usual and relocate points to 
optimize beta directly using Nelder Mead 

 
Four rules for relocating a point: 
 
1.  Reflection 
 
2.  Expansion 

3.  Contraction 
 
4.  Reduction 



Results 



Results: Impact on Mesh Quality 



Impact on Noise 



Impact on Noise 



Results: Non-convex domains 



Results: Curved Surfaces 



Results: Curved Surfaces 



Results: Impact on bilateral filtering 

Sub-sampling accelerated 
bilateral filtering. β = 0.75 
achieves the right balance 
between uniformity 
(reducing noise) and 
randomness (avoiding 
aliasing). Notice the noisier 
results with less uniform 
sampling (β = 2.0) and more 
aliasing with more regular 
sampling (CVT and triangle 
tiling). For the skull and 
reflection cases, we show 
both the whole images and 
partial zoom-ins.	




Summary and Future Work 

• This paper introduced a Well-spaced Blue-noise 
Distribution WBD, with β = rc/rf measuring 
coverage uniformity or well-spacedness.  

• We proposed the Opt-β algorithm to change a 
random point set to a WBD; blue noise is 
preserved up to β ≈ 0.75.  

• Extension to higher dimensions esp. impact on 
slivers is our next step 

• Investigate sampling solutions to the Sparse MPS 
problem.  

 



Thanks! … Questions? 


